Androgens induce sebaceous differentiation in sebocyte cells expressing a stable functional androgen receptor

The Journal of Steroid Biochemistry and Molecular Biology, 152:34-44


Bioalternatives, Gençay, France.


Androgens act through non-genomic and androgen receptor (AR)-dependent genomic mechanisms. AR is expressed in the sebaceous gland and the importance of androgens in the sebaceous function is well established. However, the in vitro models used to date have failed to evidence a clear genomic effect (e.g., modification of gene expression profile) of androgens on human sebocyte cells. In order to study the impact of active androgens in sebocytes, we constructed a stable human sebocyte cell line derived from SEBO662 [17] constitutively expressing a fully functional AR. In these SEBO662 AR+ cells, dihydrotestosterone (DHT) induced AR nuclear translocation and the strong modulation of a set of transcripts (RASD1, GREB1…) known to be androgen-sensitive in other androgenic cells and tissues.
Moreover, we observed that DHT precociously down-regulated markers for immature follicular cells (KRT15, TNC) and for hair lineage (KRT75, FST) and up-regulated the expression of genes potentially related to sebocyte differentiation (MUC1/EMA, AQP3, FADS2). These effects were fully confirmed at the protein level. In addition, DHT-stimulated SEBO662 AR+, cultured in a low-calcium defined keratinocyte medium without serum or any complement, neosynthesize lipids, including sebum lipids, and store increased amounts of triglycerides in lipid droplets. DHT also induces morphological changes, increases cell size, and treatments over 7 days lead to a time-dependent increase in the population of apoptotic DNA-fragmented cells.
Taken together, these results show for the first time that active androgens alone can engage immature sebocytes in a clear lipogenic differentiation process (Graphical abstract). These effects depend on the expression of a functional AR in these cells. This model should be of interest for revisiting the mechanisms of the sebaceous function in vitro and for the design of relevant pharmacological models for drug or compound testing.

© 2015 Elsevier Ltd.

KEYWORDS:Androgen; Apoptosis; Differentiation; Lipid; Receptor; Sebocyte

Check out Bioalternatives’ updates and experience new testing ideas

  • Bioassays, models and services
  • Posts and publications
  • Events

Related Posts or publications

Development of a new model of reconstituted mouse epidermis and characterization of its response to proinflammatory cytokines The development of three-dimensional models of reconstituted mouse epidermis (RME) has been hampered by the difficulty to maintain murine primary keratinocyte cultures and to achieve a complete epidermal stratification. In this study, a new protocol ...
in vitro modeling of skin photoaging: development of evaluation tools for cosmetics Development of in vitro models skin for better understand the modifications during photo-aging induced by repetitive UV exposure.
Development of a new model of reconstructed aged skin useful to study antiageing effects of cosmetic compounds The development of new anti-ageing products needs performant in vitro models mimicking morphological changes and physiological modifications appearing during skin ageing. In order to have access to a simple model mimicking the epidermis ageing but in...
Immortalized sebocytes SEBO662 can spontaneously differentiate into a sebaceous-like phenotype when cultured as a 3D epithelium SEBO662 multilayers spontaneously differentiate into a sebaceous-like structure as shown by the strong polarized expression of the late sebaceous marker EMA, the overexpression of some lipogenic markers and lipid production on the upper side of the e...
Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study To assess whether the keratinocyte progeny of human embryonic stem cells (hESCs) could be used to form a temporary skin substitute for use in patients awaiting autologous grafts, we investigated the cells' capability of constructing a pluristratified...